Dynamic Pricing Rules¶
Dynamic pricing is a strategy where prices are adjusted based on various factors such as demand, supply, time, customer segments, and more. Bonsai's tree-based rule engine is an excellent fit for implementing complex dynamic pricing rules.
Why Use Bonsai for Dynamic Pricing?¶
Bonsai offers several advantages for dynamic pricing:
- Complex Conditions: Pricing rules can be based on various factors
- Hierarchical Structure: Pricing rules can be organized in a hierarchical structure
- Dynamic Updates: Pricing rules can be updated without code changes
- Versioning: Changes to pricing rules can be tracked and potentially reverted
- Performance: Efficient evaluation for high-throughput scenarios
Basic Pricing Rule Implementation¶
Here's a simple example of implementing dynamic pricing with Bonsai:
// Create a Bonsai instance
Bonsai<Context> bonsai = BonsaiBuilder.builder()
.withBonsaiProperties(BonsaiProperties.builder().build())
.withEdgeStore(new InMemoryEdgeStore())
.withKeyTreeStore(new InMemoryKeyTreeStore())
.withKnotStore(new InMemoryKnotStore())
.build();
// Create pricing knots
Knot standardPricing = bonsai.createKnot(
ValuedKnotData.builder().numberValue(10.0).build(),
Map.of("description", "Standard pricing")
);
Knot discountedPricing = bonsai.createKnot(
ValuedKnotData.builder().numberValue(8.5).build(),
Map.of("description", "Discounted pricing")
);
Knot premiumPricing = bonsai.createKnot(
ValuedKnotData.builder().numberValue(12.0).build(),
Map.of("description", "Premium pricing")
);
// Create pricing decision tree
Knot pricingRoot = bonsai.createKnot(
ValuedKnotData.builder().build(),
Map.of("description", "Pricing decision root")
);
// Premium pricing for high-demand times
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(premiumPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.time")
.operator(Operator.IN)
.value(List.of("PEAK_MORNING", "PEAK_EVENING"))
.build()
))
.build());
// Discounted pricing for loyal customers
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(discountedPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.user.loyaltyTier")
.operator(Operator.GREATER_THAN_EQUAL)
.value(3)
.build()
))
.build());
// Standard pricing as default
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(standardPricing.getId())
.filters(List.of())
.build());
// Map to a key
bonsai.createMapping("pricing.standard", pricingRoot.getId());
// Evaluate the pricing
Context context = Context.builder()
.documentContext(JsonPath.parse("{\"user\": {\"loyaltyTier\": 4}, \"request\": {\"time\": \"REGULAR\"}}"))
.build();
KeyNode result = bonsai.evaluate("pricing.standard", context);
double price = result.getValue().getNumberValue(); // 8.5
Advanced Pricing Rule Implementation¶
For a more sophisticated dynamic pricing system, you can implement:
Multiple Factors¶
Adjust prices based on multiple factors:
// Premium pricing for high-demand times and premium users
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(premiumPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.time")
.operator(Operator.IN)
.value(List.of("PEAK_MORNING", "PEAK_EVENING"))
.build(),
Filter.builder()
.path("$.user.type")
.operator(Operator.EQUALS)
.value("premium")
.build()
))
.build());
Time-Based Pricing¶
Adjust prices based on time:
// Weekend pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(weekendPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.dayOfWeek")
.operator(Operator.IN)
.value(List.of("SATURDAY", "SUNDAY"))
.build()
))
.build());
// Holiday pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(holidayPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.isHoliday")
.operator(Operator.EQUALS)
.value(true)
.build()
))
.build());
Location-Based Pricing¶
Adjust prices based on location:
// Regional pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(highCostRegionPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.region")
.operator(Operator.IN)
.value(List.of("NYC", "SF", "LA"))
.build()
))
.build());
Demand-Based Pricing¶
Adjust prices based on demand:
// High demand pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(highDemandPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.demandLevel")
.operator(Operator.GREATER_THAN)
.value(0.8)
.build()
))
.build());
// Low demand pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(lowDemandPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.request.demandLevel")
.operator(Operator.LESS_THAN)
.value(0.2)
.build()
))
.build());
Customer Segment Pricing¶
Adjust prices based on customer segments:
// New customer pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(newCustomerPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.user.isNew")
.operator(Operator.EQUALS)
.value(true)
.build()
))
.build());
// VIP customer pricing
bonsai.addVariation(pricingRoot.getId(), Variation.builder()
.knotId(vipCustomerPricing.getId())
.filters(List.of(
Filter.builder()
.path("$.user.isVIP")
.operator(Operator.EQUALS)
.value(true)
.build()
))
.build());
Product-Specific Pricing¶
Implement different pricing rules for different products:
// Create product-specific pricing knots
Knot product1PricingKnot = bonsai.createKnot(
ValuedKnotData.builder().build(),
Map.of("description", "Product 1 Pricing")
);
Knot product2PricingKnot = bonsai.createKnot(
ValuedKnotData.builder().build(),
Map.of("description", "Product 2 Pricing")
);
// Add variations to product-specific pricing knots
// ...
// Create a map of product pricing
Knot productPricingKnot = bonsai.createKnot(
MapKnotData.builder()
.keyMapping(Map.of(
"product1", product1PricingKnot.getId(),
"product2", product2PricingKnot.getId()
))
.build(),
Map.of("description", "Product Pricing")
);
// Map to a key
bonsai.createMapping("pricing.products", productPricingKnot.getId());
// Evaluate product-specific pricing
KeyNode result = bonsai.evaluate("pricing.products.product1", context);
double product1Price = result.getValue().getNumberValue();
Price Modifiers¶
Implement price modifiers that adjust a base price:
// Create price modifier knots
Knot noModifier = bonsai.createKnot(
ValuedKnotData.builder().numberValue(0.0).build(),
Map.of("description", "No price modifier")
);
Knot discountModifier = bonsai.createKnot(
ValuedKnotData.builder().numberValue(-1.5).build(),
Map.of("description", "Discount modifier")
);
Knot premiumModifier = bonsai.createKnot(
ValuedKnotData.builder().numberValue(2.0).build(),
Map.of("description", "Premium modifier")
);
// Create a price modifier decision tree
Knot modifierRoot = bonsai.createKnot(
ValuedKnotData.builder().build(),
Map.of("description", "Price modifier decision root")
);
// Add variations to the modifier root
// ...
// Map to a key
bonsai.createMapping("pricing.modifier", modifierRoot.getId());
// Evaluate the base price and modifier
KeyNode baseResult = bonsai.evaluate("pricing.standard", context);
KeyNode modifierResult = bonsai.evaluate("pricing.modifier", context);
double basePrice = baseResult.getValue().getNumberValue();
double modifier = modifierResult.getValue().getNumberValue();
double finalPrice = basePrice + modifier;
Pricing Service¶
In a real application, you would typically implement a service layer for pricing:
@Service
public class PricingService {
private final Bonsai<Context> bonsai;
@Autowired
public PricingService(Bonsai<Context> bonsai) {
this.bonsai = bonsai;
}
public double getPrice(String productId, User user, RequestContext requestContext) {
// Create a context with user and request data
Map<String, Object> contextData = new HashMap<>();
contextData.put("user", user);
contextData.put("request", requestContext);
contextData.put("product", productRepository.findById(productId));
Context context = Context.builder()
.documentContext(JsonPath.parse(contextData))
.build();
// Evaluate the pricing
try {
KeyNode result = bonsai.evaluate("pricing.products." + productId, context);
return result.getValue().getNumberValue();
} catch (BonsaiError e) {
// Handle errors (e.g., pricing rule not found)
return getDefaultPrice(productId);
}
}
private double getDefaultPrice(String productId) {
// Return a default price for the product
return productRepository.findById(productId).getDefaultPrice();
}
}
Pricing Rule Management UI¶
For a complete dynamic pricing system, you would typically implement a management UI that allows business users to:
- Create and manage pricing rules
- Define conditions for different prices
- Monitor pricing rule usage
- A/B test pricing rules
- Analyze the impact of pricing rules on revenue
While implementing a UI is beyond the scope of this guide, Bonsai's API provides all the necessary operations to support such a UI.
Best Practices¶
- Use a consistent naming convention: Use a consistent naming convention for pricing rule keys
- Document pricing rules: Document the purpose and conditions of each pricing rule
- Test pricing rules: Test pricing rules with various inputs to ensure they work as expected
- Monitor pricing rule usage: Track which prices are applied in which scenarios
- Consider performance: Optimize pricing rule evaluation for high-throughput scenarios
- Implement caching: Cache pricing results to improve performance
- Handle errors gracefully: Provide sensible defaults when pricing rules cannot be evaluated
- Consider legal and ethical implications: Ensure that your dynamic pricing strategy complies with relevant laws and regulations